Skip to content

You Don't Need NgRx To Write a Good Angular App

This article was written over 18 months ago and may contain information that is out of date. Some content may be relevant but please refer to the relevant official documentation or available resources for the latest information.

NgRx is a great tool that allows you to manage state and side effects in Angular applications in a Redux-like manner. It streamlines state changes with its unidirectional data flow, and offers a structured approach to handling data and side effects. Numerous posts on our blog detail its strengths and affiliated techniques. Some Angular developers even argue that incorporating NgRx is imperative once an app expands beyond two features.

While NgRx can undoubtedly enhance an Angular application or library by simplifying debugging, translating business logic into code, and improving the architecture, it does present a steep learning curve. Despite the provocative title, there is some truth to the statement: your app or library may indeed not need NgRx. Surprisingly, I successfully developed a suite of enterprise Angular libraries over five years without involving NgRx.

In that project, we decided to opt out of using a state management library like NgRx because of its steep learning curve. Developers with varying levels of Angular expertise were involved, and the goal was to simplify their experience. My bold assertion is that, with careful consideration of architectural patterns, it is entirely possible to develop a robust app or library using only Angular, without any third-party libraries. Employing select design patterns and leveraging Angular's built-in tools can yield a highly maintainable app, even without a dedicated state management library.

Having shared my somewhat audacious opinion, let me now support it by outlining a few patterns that facilitate the development of a maintainable, stateful Angular application or library without NgRx.

Services and the Singleton Pattern

Services provided in root or a module yield a shared instance across the entire app or module, effectively rendering them singletons. This characteristic makes them ideal for managing and sharing state across components without requiring a dedicated state management tool like NgRx. Particularly, for small to medium-sized applications, a "state service" can be a straightforward and effective alternative to a comprehensive state management solution when implemented correctly.

To accurately implement state in a singleton service, consider the following:

  • Restrict state data to private properties and expose them only through public methods or observables to prevent external mutations. Such a pattern safeguards the integrity of your state by averting unauthorized modifications.

  • Utilize BehaviorSubjects or signals to enable components to respond to state changes. Both BehaviorSubject and SettableSignal retain the current value and emit it to new subscribers immediately. Components can then subscribe to these to receive the current value and any subsequent updates.

  • Expose public methods in your service that manage state modifications to centralize the logic for updating the state and incorporate validation, logging, or other necessary side effects.

  • When modifying state, always return a new instance of the data rather than altering the original data. This ensures that references are broken and components that rely on change detection can accurately detect changes.

Good Component Architecture

Distinguish your UI components into stateful (containers) and stateless (presentational) components. Stateful components manage data and logic, while stateless components merely receive data via inputs and emit events without maintaining an internal state.

Do not get dragged into the rabbit hole of anti-patterns such as input drilling or event bubbling while trying to make as many components presentational as possible. Instead, use a Data Service Layer to provide a clean abstraction over backend API calls and handle error management, data transformation, caching, and even state management where it makes sense. Although injecting a service into a component technically categorizes it as a "smart" component, segregating the data access logic into a separate service layer ultimately enhances modularity, maintainability, scalability, and testability.

Immutability

A best practice is to always treat your state as immutable. Instead of modifying an object or an array directly, you should create a new copy with the changes. Adhering to immutability ensures predictability and can help in tracking changes.

Applying the ChangeDetectionStrategy.OnPush strategy to components whenever possible is also a good idea as it not only optimizes performance since Angular only evaluates the component for changes when its inputs change or when a bound event is triggered, but it also enforces immutability. Change detection is only activated when a different object instance is passed to the input.

Leveraging Angular Router

Angular's router is a powerful tool for managing application state. It enables navigation between different parts of an application, allowing parameters to be passed along, effectively using the URL as a single source of truth for your application state, which makes the application more predictable, bookmarkable, and capable of maintaining state across reloads. Moreover, components can subscribe to URL changes and react accordingly. You can also employ router resolvers to fetch data before navigating to a route, ensuring that the necessary state is loaded before the route is activated. However, think carefully about what state you store in the URL; it should ideally only contain the state essential for navigating to a specific view of your application. More ephemeral states, like UI state, should be managed in components or services.

Conclusion

Angular provides lots of built-in tools and features you can effectively leverage to develop robust, maintainable applications without third-party state management libraries like NgRx. While NgRx is undoubtedly a valuable tool for managing state and side effects in large, complex applications, it may not be necessary for all projects. By employing thoughtful design patterns, such as the Singleton Pattern, adhering to principles of immutability, and leveraging Angular's built-in tools like the Router and Services, you can build a highly maintainable and stateful Angular application or library.

This Dot is a consultancy dedicated to guiding companies through their modernization and digital transformation journeys. Specializing in replatforming, modernizing, and launching new initiatives, we stand out by taking true ownership of your engineering projects.

We love helping teams with projects that have missed their deadlines or helping keep your strategic digital initiatives on course. Check out our case studies and our clients that trust us with their engineering.

You might also like

Angular 18 Announced: Zoneless Change Detection and More cover image

Angular 18 Announced: Zoneless Change Detection and More

Angular 18 Announced: Zoneless Change Detection and More Angular 18 has officially landed, and yet again, the Angular team has proven that they are listening to the community and are committed to continuing the framework's renaissance. The release polishes existing features, addresses common developer requests, and introduces experimental zoneless change detection. Let's examine the major updates and enhancements that Angular 18 offers. 1. Zoneless Angular One of the most exciting features of Angular 18 is the introduction of experimental support for zoneless change detection. Historically, Zone.js has been responsible for triggering Angular's change detection. However, this approach has downsides, especially regarding performance and debugging complexity. The Angular team has been working towards making Zone.js optional, and Angular 18 marks a significant milestone in this journey. Key Features of Zoneless Angular 1. Hybrid Change Detection: In Angular 18, a new hybrid change detection mode is enabled by default. This mode allows Angular to listen to changes from signals and other notifications regarding changes that occur either inside an Angular zone or not. That effectively means you can write (library) code that works regardless of whether Zone.js is being used, paving the way to fully zoneless apps without compromising backward compatibility. For new applications, Angular enables zone coalescing by default, which removes the number of change detection cycles and improves performance. For existing applications, you can enable zone coalescing by configuring your NgZone provider in bootstrapApplication: ` 2. Experimental API for Zoneless Mode: Angular 18 introduces an experimental API to disable Zone.js entirely. This API allows developers to run applications in a fully zoneless mode, paving the way for improved performance and simpler debugging. The zoneless change detection requires an entirely new scheduler which relies on notifications from the Angular core APIs, such as ChangeDetectorRef.markForCheck (called automatically by the AsyncPipe), ComponentRef.setInput, signal updates, host listener updates, or attaching a view that was marked dirty. 3. Improved Composability and Interoperability: Zoneless change detection enhances composability for micro-frontends and interoperability with other frameworks. It also offers faster initial render and runtime, smaller bundle sizes, more readable stack traces, and simpler debugging. How to Try Zoneless Angular To experiment with zoneless change detection, you can add the provideExperimentalZonelessChangeDetection provider to your application bootstrap: ` After adding the provider, remove Zone.js from your polyfills in angular.json. You can read more about the experimental zoneless change detection in the official documentation. By the way, angular.dev is now considered the official home for Angular developers! 2. Server-side Rendering and Hydration Enhancements A feature I'm particularly excited about is the improvements to Angular's server-side rendering (SSR) and hydration in terms of developer experience and debugging: 1. Enhanced DevTools Support: Angular DevTools now includes overlays and detailed error breakdowns to help visualize and debug hydration issues directly in the browser. This refreshing focus on developer experience shows that the Angular team wants to make the framework more approachable and user-friendly. 2. Hydration Support for Angular Material: All Angular Material components now support client hydration and are no longer skipped, which enhances performance and user experience. 3. Event Replay: Available in developer preview, event replay captures user interactions during SSR and replays them once the application is hydrated, ensuring a seamless user experience before complete hydration. It is powered by the same library as Google Search. 4. i18n Hydration Support: Up to v17, Angular skipped hydration for components with i18n blocks. From v18, hydration support for i18n blocks is in developer preview, allowing developers to use client hydration in internationalized applications. 3. Stable Material Design 3 After introducing experimental support for Material Design 3 in Angular 17, Angular 18 now includes stable support. The key features of Material Design 3 in Angular 18 include: 1. Simplified Theme Styles: Based on CSS variables, the new theming styles offer more granular customization and a flexible API for applying color variants to components. 2. Theming Generation Schematics: Using the Ng CLI, you can generate Material 3 themes. 3. Sass APIs: New Sass APIs allow developers to read colors, typography, and other properties from the Material 3 theme, making it easier to create custom components. How to use Material Design 3 in Angular 18 To use Material Design 3 in Angular 18, you can define a theme in your application's styles.scss file using the mat.defineTheme function: ` Or generate a Material 3 theme using the Ng CLI: ` You can then apply the theme to your application using the mat.theme mixin: ` Head to the official guide for a more detailed guide. You'll also notice they have refreshed the docs with the new themes and further documentation. 4. Signal-Based APIs The path to fully signal-based components includes new signal inputs, model inputs, and signal query APIs. We already wrote about them as they were in developer-preview in v17, but they have been further refined in v18. These APIs offer a type-safe, reactive way to manage state changes and interactions within components: 1. Signal Input API: Signal inputs allow values to be bound from parent to child components. Those values are exposed using a signal and can change during the component's life cycle. 2. Model Input API: Model inputs are a special input type that enables a component to propagate new values back to the parent component. That allows developers to keep the parent component in sync with the child component with two-way binding. 3. Signal Query API: This was a particularly requested feature from the community. The signal query APIs work the same way as ViewChild and ContentChild under the hood, but they return signals, providing more predictable timing and type safety. 5. Fallback Content For ng-content A very requested feature from the community, Angular 18 introduces a new ng-content directive that allows developers to define fallback content when no content is projected into a component. This feature is particularly useful for creating reusable components with default content. Here's an example of using the new ng-content directive. Using the following component ` like this ` will render Howdy World. 6. Other Improvements In addition to the major updates mentioned above, Angular 18 also includes several other improvements and updates: 1. TypeScript 5.4: Angular 18 now supports TypeScript 5.4, which lets you take advantage of new features such as preserved narrowing in closures following last assignments. 2. Global Observable in Angular Forms: Angular 18 introduces a global events observable in Angular forms, which allows you to track all changes around any abstract control and its children, including the touched or dirty in a single observable. Here's an example of how you can use the global observable: ` 3. Stable Deferrable views: Deferrable views are now stable in Angular 18. 4. Stable Control Flow: The built-in control flow is now stable in Angular 18! It is more performant than its predecessor. It also received improved type checking, including guardrails for certain performance-related anti-patterns. 5. Route Redirects as Functions: For added flexibility in managing redirects, Angular v18 now lets you use a function for redirectTo that returns a string, which allows you to create more sophisticated redirection logic based on runtime conditions. For example: ` Conclusion Angular 18 is a significant release that brings many new features, enhancements, and experimental APIs to the Angular ecosystem. The introduction of zoneless change detection, improvements to server-side rendering and hydration, stable Material Design 3 support, signal-based APIs, and fallback content for ng-content are just a few of the highlights of this release. The Angular team has again demonstrated its commitment to improving the framework's developer experience, performance, and flexibility. It also demonstrated a clear vision for Angular's future. If you're curious about what's next, you can check out the Angular roadmap....

Incremental Hydration in Angular cover image

Incremental Hydration in Angular

Incremental Hydration in Angular Some time ago, I wrote a post about SSR finally becoming a first-class citizen in Angular. It turns out that the Angular team really treats SSR as a priority, and they have been working tirelessly to make SSR even better. As the previous blog post mentioned, full-page hydration was launched in Angular 16 and made stable in Angular 17, providing a great way to improve your Core Web Vitals. Another feature aimed to help you improve your INP and other Core Web Vitals was introduced in Angular 17: deferrable views. Using the @defer blocks allows you to reduce the initial bundle size and defer the loading of heavy components based on certain triggers, such as the section entering the viewport. Then, in September 2024, the smart folks at Angular figured out that they could build upon those two features, allowing you to mark parts of your application to be server-rendered dehydrated and then hydrate them incrementally when needed - hence incremental hydration. I’m sure you know what hydration is. In short, the server sends fully formed HTML to the client, ensuring that the user sees meaningful content as quickly as possible and once JavaScript is loaded on the client side, the framework will reconcile the rendered DOM with component logic, event handlers, and state - effectively hydrating the server-rendered content. But what exactly does "dehydrated" mean, you might ask? Here's what will happen when you mark a part of your application to be incrementally hydrated: 1. Server-Side Rendering (SSR): The content marked for incremental hydration is rendered on the server. 2. Skipped During Client-Side Bootstrapping: The dehydrated content is not initially hydrated or bootstrapped on the client, reducing initial load time. 3. Dehydrated State: The code for the dehydrated components is excluded from the initial client-side bundle, optimizing performance. 4. Hydration Triggers: The application listens for specified hydration conditions (e.g., on interaction, on viewport), defined with a hydrate trigger in the @defer block. 5. On-Demand Hydration: Once the hydration conditions are met, Angular downloads the necessary code and hydrates the components, allowing them to become interactive without layout shifts. How to Use Incremental Hydration Thanks to Mark Thompson, who recently hosted a feature showcase on incremental hydration, we can show some code. The first step is to enable incremental hydration in your Angular application's appConfig using the provideClientHydration provider function: ` Then, you can mark the components you want to be incrementally hydrated using the @defer block with a hydrate trigger: ` And that's it! You now have a component that will be server-rendered dehydrated and hydrated incrementally when it becomes visible to the user. But what if you want to hydrate the component on interaction or some other trigger? Or maybe you don't want to hydrate the component at all? The same triggers already supported in @defer blocks are available for hydration: - idle: Hydrate once the browser reaches an idle state. - viewport: Hydrate once the component enters the viewport. - interaction: Hydrate once the user interacts with the component through click or keydown triggers. - hover: Hydrate once the user hovers over the component. - immediate: Hydrate immediately when the component is rendered. - timer: Hydrate after a specified time delay. - when: Hydrate when a provided conditional expression is met. And on top of that, there's a new trigger available for hydration: - never: When used, the component will remain static and not hydrated. The never trigger is handy when you want to exclude a component from hydration altogether, making it a completely static part of the page. Personally, I'm very excited about this feature and can't wait to try it out. How about you?...

Understanding the Difference Between `:focus` and `:focus-visible` in CSS cover image

Understanding the Difference Between `:focus` and `:focus-visible` in CSS

Understanding the Difference Between :focus and :focus-visible in CSS I have learned my fair share about the importance of keyboard accessibility, so I know that visual indication of the focused element is very important. But the well-known :focus pseudo-class is not always the best fit for this job. That's where :focus-visible comes in. Let's look at the differences between these two pseudo-classes and explore the best practices for using them effectively. What is the :focus Pseudo-Class? The :focus pseudo-class is a CSS selector that applies styles to any element that receives focus, regardless of how that focus was triggered. This includes focus events from keyboard navigation, mouse clicks, and touch interactions. Example Usage of :focus ` In this example, the button will display a blue outline whenever it is focused, whether the user clicks on it with a mouse, taps it on a touchscreen, or navigates to it using the keyboard. What is the :focus-visible Pseudo-Class? The :focus-visible pseudo-class is more specialized. It only applies styles to an element when the browser determines that the focus should be visible. This typically occurs when the user navigates via the keyboard or assistive technologies rather than through mouse or touch input. Example Usage of :focus-visible ` Here, the button will only show a blue outline when focused through keyboard navigation or another input method that usually requires visible focus indicators. Key Differences Between :focus and :focus-visible :focus - Behavior: Applies to any element that receives focus, regardless of the input method. - Use Cases: Ensures that all interactions with the element are visually indicated, whether by mouse, keyboard, or touch. :focus-visible - Behavior: Applies styles only when the focus should be visible, such as using a keyboard or assistive technology. - Use Cases: Ideal for scenarios where you want to provide focus indicators only to keyboard and assistive technology users while avoiding unnecessary outlines for mouse and touch users, typically required by design. Accessibility Implications :focus - Pros: - Guarantees that all users can see when an element is focused, which is critical for accessibility. - Cons: - Can lead to a suboptimal experience for mouse users, as focus styles may appear unnecessarily during mouse interactions. :focus-visible - Pros: - Enhances user experience by showing focus indicators only when necessary, thus keeping the interface clean for mouse and touch users. - Tailors the experience for keyboard and assistive technology users, providing them with clear visual cues. - Cons: - Additional considerations may be required to ensure that focus indicators are not accidentally omitted, especially in older browsers that do not support :focus-visible. - There may be cases where you want to show focus indicators for all users, regardless of input method. Best Practices for Using :focus and :focus-visible To achieve the best accessibility and user experience, combining both :focus and :focus-visible in your CSS is often a good idea. Combining :focus and :focus-visible ` Here is a Stackblitz example of what such styling could look like for you to try out and play with. Additional Tips - Test with Keyboard and Assistive Technology: Ensure that your web application is navigable using a keyboard (Tab, Shift + Tab, etc.) and that focus indicators are visible for those who rely on them. It's never a bad idea to include accessibility testing in your e2e testing suite. - Provide Clear Focus Indicators: Make sure that focus indicators are prominent and easy to see. A subtle or hard-to-spot focus indicator can severely impact accessibility for users who rely on keyboard navigation. Conclusion The :focus-visible pseudo-class offers a more refined way to manage focus indicators, improving accessibility and user experience, particularly for keyboard and assistive technology users. By understanding the differences between :focus and :focus-visible, and applying best practices in your CSS, you can create more accessible and user-friendly web applications. Remember, accessibility should never be an afterthought. By thoughtfully applying focus styles, you ensure that all users, regardless of how they interact with your site, can easily navigate and interact....

Next.js Rendering Strategies and how they affect core web vitals cover image

Next.js Rendering Strategies and how they affect core web vitals

When it comes to building fast and scalable web apps with Next.js, it’s important to understand how rendering works, especially with the App Router. Next.js organizes rendering around two main environments: the server and the client. On the server side, you’ll encounter three key strategies: Static Rendering, Dynamic Rendering, and Streaming. Each one comes with its own set of trade-offs and performance benefits, so knowing when to use which is crucial for delivering a great user experience. In this post, we'll break down each strategy, what it's good for, and how it impacts your site's performance, especially Core Web Vitals. We'll also explore hybrid approaches and provide practical guidance on choosing the right strategy for your use case. What Are Core Web Vitals? Core Web Vitals are a set of metrics defined by Google that measure real-world user experience on websites. These metrics play a major role in search engine rankings and directly affect how users perceive the speed and smoothness of your site. * Largest Contentful Paint (LCP): This measures loading performance. It calculates the time taken for the largest visible content element to render. A good LCP is 2.5 seconds or less. * Interaction to Next Paint (INP): This measures responsiveness to user input. A good INP is 200 milliseconds or less. * Cumulative Layout Shift (CLS): This measures the visual stability of the page. It quantifies layout instability during load. A good CLS is 0.1 or less. If you want to dive deeper into Core Web Vitals and understand more about their impact on your website's performance, I recommend reading this detailed guide on New Core Web Vitals and How They Work. Next.js Rendering Strategies and Core Web Vitals Let's explore each rendering strategy in detail: 1. Static Rendering (Server Rendering Strategy) Static Rendering is the default for Server Components in Next.js. With this approach, components are rendered at build time (or during revalidation), and the resulting HTML is reused for each request. This pre-rendering happens on the server, not in the user's browser. Static rendering is ideal for routes where the data is not personalized to the user, and this makes it suitable for: * Content-focused websites: Blogs, documentation, marketing pages * E-commerce product listings: When product details don't change frequently * SEO-critical pages: When search engine visibility is a priority * High-traffic pages: When you want to minimize server load How Static Rendering Affects Core Web Vitals * Largest Contentful Paint (LCP): Static rendering typically leads to excellent LCP scores (typically < 1s). The Pre-rendered HTML can be cached and delivered instantly from CDNs, resulting in very fast delivery of the initial content, including the largest element. Also, there is no waiting for data fetching or rendering on the client. * Interaction to Next Paint (INP): Static rendering provides a good foundation for INP, but doesn't guarantee optimal performance (typically ranges from 50-150 ms depending on implementation). While Server Components don't require hydration, any Client Components within the page still need JavaScript to become interactive. To achieve a very good INP score, you will need to make sure the Client Components within the page is minimal. * Cumulative Layout Shift (CLS): While static rendering delivers the complete page structure upfront which can be very beneficial for CLS, achieving excellent CLS requires additional optimization strategies: * Static HTML alone doesn't prevent layout shifts if resources load asynchronously * Image dimensions must be properly specified to reserve space before the image loads * Web fonts can cause text to reflow if not handled properly with font display strategies * Dynamically injected content (ads, embeds, lazy-loaded elements) can disrupt layout stability * CSS implementation significantly impacts CLS—immediate availability of styling information helps maintain visual stability Code Examples: 1. Basic static rendering: ` 2. Static rendering with revalidation (ISR): ` 3. Static path generation: ` 2. Dynamic Rendering (Server Rendering Strategy) Dynamic Rendering generates HTML on the server for each request at request time. Unlike static rendering, the content is not pre-rendered or cached but freshly generated for each user. This kind of rendering works best for: * Personalized content: User dashboards, account pages * Real-time data: Stock prices, live sports scores * Request-specific information: Pages that use cookies, headers, or search parameters * Frequently changing data: Content that needs to be up-to-date on every request How Dynamic Rendering Affects Core Web Vitals * Largest Contentful Paint (LCP): With dynamic rendering, the server needs to generate HTML for each request, and that can't be fully cached at the CDN level. It is still faster than client-side rendering as HTML is generated on the server. * Interaction to Next Paint (INP): The performance is similar to static rendering once the page is loaded. However, it can become slower if the dynamic content includes many Client Components. * Cumulative Layout Shift (CLS): Dynamic rendering can potentially introduce CLS if the data fetched at request time significantly alters the layout of the page compared to a static structure. However, if the layout is stable and the dynamic content size fits within predefined areas, the CLS can be managed effectively. Code Examples: 1. Explicit dynamic rendering: ` 2. Simplicit dynamic rendering with cookies: ` 3. Dynamic routes: ` 3. Streaming (Server Rendering Strategy) Streaming allows you to progressively render UI from the server. Instead of waiting for all the data to be ready before sending any HTML, the server sends chunks of HTML as they become available. This is implemented using React's Suspense boundary. React Suspense works by creating boundaries in your component tree that can "suspend" rendering while waiting for asynchronous operations. When a component inside a Suspense boundary throws a promise (which happens automatically with data fetching in React Server Components), React pauses rendering of that component and its children, renders the fallback UI specified in the Suspense component, continues rendering other parts of the page outside this boundary, and eventually resumes and replaces the fallback with the actual component once the promise resolves. When streaming, this mechanism allows the server to send the initial HTML with fallbacks for suspended components while continuing to process suspended components in the background. The server then streams additional HTML chunks as each suspended component resolves, including instructions for the browser to seamlessly replace fallbacks with final content. It works well for: * Pages with mixed data requirements: Some fast, some slow data sources * Improving perceived performance: Show users something quickly while slower parts load * Complex dashboards: Different widgets have different loading times * Handling slow APIs: Prevent slow third-party services from blocking the entire page How Streaming Affects Core Web Vitals * Largest Contentful Paint (LCP): Streaming can improve the perceived LCP. By sending the initial HTML content quickly, including potentially the largest element, the browser can render it sooner. Even if other parts of the page are still loading, the user sees the main content faster. * Interaction to Next Paint (INP): Streaming can contribute to a better INP. When used with React's <Suspense />, interactive elements in the faster-loading parts of the page can become interactive earlier, even while other components are still being streamed in. This allows users to engage with the page sooner. * Cumulative Layout Shift (CLS): Streaming can cause layout shifts as new content streams in. However, when implemented carefully, streaming should not negatively impact CLS. The initially streamed content should establish the main layout, and subsequent streamed chunks should ideally fit within this structure without causing significant reflows or layout shifts. Using placeholders and ensuring dimensions are known can help prevent CLS. Code Examples: 1. Basic Streaming with Suspense: ` 2. Nested Suspense boundaries for more granular control: ` 3. Using Next.js loading.js convention: ` 4. Client Components and Client-Side Rendering Client Components are defined using the React 'use client' directive. They are pre-rendered on the server but then hydrated on the client, enabling interactivity. This is different from pure client-side rendering (CSR), where rendering happens entirely in the browser. In the traditional sense of CSR (where the initial HTML is minimal, and all rendering happens in the browser), Next.js has moved away from this as a default approach but it can still be achievable by using dynamic imports and setting ssr: false. ` Despite the shift toward server rendering, there are valid use cases for CSR: 1. Private dashboards: Where SEO doesn't matter, and you want to reduce server load 2. Heavy interactive applications: Like data visualization tools or complex editors 3. Browser-only APIs: When you need access to browser-specific features like localStorage or WebGL 4. Third-party integrations: Some third-party widgets or libraries that only work in the browser While these are valid use cases, using Client Components is generally preferable to pure CSR in Next.js. Client Components give you the best of both worlds: server-rendered HTML for the initial load (improving SEO and LCP) with client-side interactivity after hydration. Pure CSR should be reserved for specific scenarios where server rendering is impossible or counterproductive. Client components are good for: * Interactive UI elements: Forms, dropdowns, modals, tabs * State-dependent UI: Components that change based on client state * Browser API access: Components that need localStorage, geolocation, etc. * Event-driven interactions: Click handlers, form submissions, animations * Real-time updates: Chat interfaces, live notifications How Client Components Affect Core Web Vitals * Largest Contentful Paint (LCP): Initial HTML includes the server-rendered version of Client Components, so LCP is reasonably fast. Hydration can delay interactivity but doesn't necessarily affect LCP. * Interaction to Next Paint (INP): For Client Components, hydration can cause input delay during page load, and when the page is hydrated, performance depends on the efficiency of event handlers. Also, complex state management can impact responsiveness. * Cumulative Layout Shift (CLS): Client-side data fetching can cause layout shifts as new data arrives. Also, state changes might alter the layout unexpectedly. Using Client Components will require careful implementation to prevent shifts. Code Examples: 1. Basic Client Component: ` 2. Client Component with server data: ` Hybrid Approaches and Composition Patterns In real-world applications, you'll often use a combination of rendering strategies to achieve the best performance. Next.js makes it easy to compose Server and Client Components together. Server Components with Islands of Interactivity One of the most effective patterns is to use Server Components for the majority of your UI and add Client Components only where interactivity is needed. This approach: 1. Minimizes JavaScript sent to the client 2. Provides excellent initial load performance 3. Maintains good interactivity where needed ` Partial Prerendering (Next.js 15) Next.js 15 introduced Partial Prerendering, a new hybrid rendering strategy that combines static and dynamic content in a single route. This allows you to: 1. Statically generate a shell of the page 2. Stream in dynamic, personalized content 3. Get the best of both static and dynamic rendering Note: At the time of this writing, Partial Prerendering is experimental and is not ready for production use. Read more ` Measuring Core Web Vitals in Next.js Understanding the impact of your rendering strategy choices requires measuring Core Web Vitals in real-world conditions. Here are some approaches: 1. Vercel Analytics If you deploy on Vercel, you can use Vercel Analytics to automatically track Core Web Vitals for your production site: ` 2. Web Vitals API You can manually track Core Web Vitals using the web-vitals library: ` 3. Lighthouse and PageSpeed Insights For development and testing, use: * Chrome DevTools Lighthouse tab * PageSpeed Insights * Chrome User Experience Report Making Practical Decisions: Which Rendering Strategy to Choose? Choosing the right rendering strategy depends on your specific requirements. Here's a decision framework: Choose Static Rendering when * Content is the same for all users * Data can be determined at build time * Page doesn't need frequent updates * SEO is critical * You want the best possible performance Choose Dynamic Rendering when * Content is personalized for each user * Data must be fresh on every request * You need access to request-time information * Content changes frequently Choose Streaming when * Page has a mix of fast and slow data requirements * You want to improve perceived performance * Some parts of the page depend on slow APIs * You want to prioritize showing critical UI first Choose Client Components when * UI needs to be interactive * Component relies on browser APIs * UI changes frequently based on user input * You need real-time updates Conclusion Next.js provides a powerful set of rendering strategies that allow you to optimize for both performance and user experience. By understanding how each strategy affects Core Web Vitals, you can make informed decisions about how to build your application. Remember that the best approach is often a hybrid one, combining different rendering strategies based on the specific requirements of each part of your application. Start with Server Components as your default, use Static Rendering where possible, and add Client Components only where interactivity is needed. By following these principles and measuring your Core Web Vitals, you can create Next.js applications that are fast, responsive, and provide an excellent user experience....

Let's innovate together!

We're ready to be your trusted technical partners in your digital innovation journey.

Whether it's modernization or custom software solutions, our team of experts can guide you through best practices and how to build scalable, performant software that lasts.

Prefer email? hi@thisdot.co