Skip to content

Angular 17: Continuing the Renaissance

Angular 17: Continuing the Renaissance

Angular 17: A New Era

November 8th marked a significant milestone in the world of Angular with the release of Angular 17. This wasn't just any ordinary update; it was a leap forward, signifying a new chapter for the popular framework. But what made this release truly stand out was the unveiling of Angular's revamped website, complete with a fresh brand identity and a new logo. This significant transformation represents the evolving nature of Angular, aligning with the modern demands of web development.

Angular's New Logo

To commemorate this launch, we also hosted a release afterparty, where we went deep into its new features with Minko Gechev from the Angular core team, and Google Developer Experts (GDEs) Brandon Roberts, Deborah Kurata, and Enea Jahollari.

But what exactly are these notable new features in the latest version? Let's dive in and explore.

The Angular Renaissance

Angular has been undergoing a significant revival, often referred to as Angular's renaissance, a term coined by Sarah Drasner, the Director of Engineering at Google, earlier this year. This revival has been particularly evident in its recent versions. The Angular team has worked hard to introduce many new improvements, focusing on signal-based reactivity, hydration, server-side rendering, standalone components, and migrating to esbuild and Vite for a better and faster developer experience. This latest release, in particular, marks many of these features as production-ready.

Standalone Components

About a year ago, Angular began a journey toward modernity with the introduction of standalone components. This move significantly enhanced the developer experience, making Angular more contemporary and user-friendly.

In Angular's context, a standalone component is a self-sufficient, reusable code unit that combines logic, data, and user interface elements. What sets these components apart is their independence from Angular's NgModule system, meaning they do not rely on it for configuration or dependencies. By setting a standalone: true flag, you no longer need to embed your component in an NgModule and you can bootstrap directly off that component:

// ./app/app.component.ts
@Component({ selector: 'app', template: 'hello', standalone: true })
export class AppComponent {}

// ./main.ts
import { bootstrapApplication } from '@angular/platform-browser';
import { AppComponent } from './app/app.component';
bootstrapApplication(AppComponent).catch(e => console.error(e));

Compared to the NgModules way of adding components, as shown below, you can immediately see how standalone components make things much simpler.

// ./app/app.component.ts
import { Component } from '@angular/core';

@Component({
  selector: 'app-root',
  templateUrl: './app.component.html',
  styleUrls: ['./app.component.css'],
})
export class AppComponent {
  title = 'CodeSandbox';
}

// ./app/app.module.ts
import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';

@NgModule({
  declarations: [
    AppComponent
  ],
  imports: [
    BrowserModule
  ],
  providers: [],
  bootstrap: [AppComponent]
})
export class AppModule { }

// .main.ts
import { platformBrowserDynamic } from '@angular/platform-browser-dynamic';

import { AppModule } from './app/app.module';

platformBrowserDynamic()
  .bootstrapModule(AppModule)
  .catch((err) => console.error(err));

In this latest release, the Angular CLI now defaults to generating standalone components, directives, and pipes. This default setting underscores the shift towards a standalone-centric development approach in Angular.

New Syntax for Enhanced Control Flow

Angular 17 introduces a new syntax for control flow, replacing traditional structural directives like ngIf or ngFor, which have been part of Angular since version 2. This new syntax is designed for fine-grained change detection and eventual zone-less operation when Angular completely migrates to signals. It's more streamlined and performance-efficient, making handling conditional or list content in templates easier.

The @if block replaces *ngIf for expressing conditional parts of the UI.

@if (a > b) {
  {{a}} is greater than {{b}}
} @else if (b > a) {
  {{a}} is less than {{b}}
} @else {
  {{a}} is equal to {{b}}
}

The @switch block replaces ngSwitch, offering benefits such as not requiring a container element to hold the condition expression or each conditional template. It also supports template type-checking, including type narrowing within each branch.

@switch (condition) {
  @case (caseA) {
    Case A.
  }
  @case (caseB) {
    Case B.
  }
  @default {
    Default case.
  }
}

The @for block replaces *ngFor for iteration and presents several differences compared to its structural directive predecessor, ngFor. For example, the tracking expression (calculating keys corresponding to object identities) is mandatory but offers better ergonomics. Additionally, it supports @empty blocks.

@for (item of items; track item.id) {
  {{ item.name }}
}

Defer Block for Lazy Loading

Angular 17 introduces the @defer block, a dramatically improving lazy loading of content within Angular applications. Within the @defer block framework, several sub-blocks are designed to elegantly manage different phases of the deferred loading process. The main content within the @defer block is the segment designated for lazy loading. Initially, this content is not rendered, becoming visible only when specific triggers are activated or conditions are met, and after the required dependencies have been loaded. By default, the trigger for a @defer block is the browser reaching an idle state.

For instance, take the following block: it delays the loading of the calendar-imp component until it comes into the viewport. Until that happens, a placeholder is shown. This placeholder displays a loading message when the calendar-imp component begins to load, and an error message if, for some reason, the component fails to load.

@defer (on viewport) {
  <calendar-cmp />
} @placeholder {
  <div>Calendar placeholder</div>
} @loading {
  <div>Loading calendar</div>
} @error {
  <div>Error loading calendar</div>
}

The on keyword supports a wide a variety of other conditions, such as:

  • idle (when the browser has reached an idle state)
  • interaction (when the user interacts with a specified element)
  • hover (when the mouse has hovered over a trigger area)
  • timer(x) (triggers after a specified duration)
  • immediate (triggers the deferred load immediately)

The second option of configuring when deferring happens is by using the when keyword. For example:

@defer (when isVisible) {
  <calendar-cmp />
}

Server-Side Rendering (SSR)

Angular 17 has made server-side rendering (SSR) much more straightforward. Now, a --ssr option is included in the ng new command, removing the need for additional setup or configurations. When creating a new project with the ng new command, the CLI inquires if SSR should be enabled. As of version 17, the default response is set to 'No'. However, for version 18 and beyond, the plan is to enable SSR by default in newly generated applications. If you prefer to start with SSR right away, you can do so by initializing your project with the --ssr flag:

ng new --ssr

For adding SSR to an already existing project, utilize the ng add command of the Angular CLI:

ng add @angular/ssr

Hydration

In Angular 17, the process of hydration, which is essential for reviving a server-side rendered application on the client-side, has reached a stable, production-ready status. Hydration involves reusing the DOM structures rendered on the server, preserving the application's state, and transferring data retrieved from the server, among other crucial tasks. This functionality is automatically activated when server-side rendering (SSR) is used. It offers a more efficient approach than the previous method, where the server-rendered tree was completely replaced, often causing visible UI flickers. Such re-rendering can adversely affect Core Web Vitals, including Largest Contentful Paint (LCP), leading to layout shifts. By enabling hydration, Angular 17 allows for the reuse of the existing DOM, effectively preventing these flickers.

Support for View Transitions

The new View Transitions API, supported by some browsers, is now integrated into the Angular router. This feature, which must be activated using the withViewTransitions function, allows for CSS-based animations during route transitions, adding a layer of visual appeal to applications.

To use it, first you need to import withViewTransitions:

import { provideRouter, withViewTransitions } from '@angular/router';

Then, you need to add it to the provideRouter configuration:

bootstrapApplication(AppComponent, {
 providers: [
   provideRouter(routes, withViewTransitions())
 ]
})

Other Notable Changes

  • Angular 17 has stabilized signals, initially introduced in Angular 16, providing a new method for state management in Angular apps.
  • Angular 17 no longer supports Node 16. The minimal Node version required is now 18.13.
  • TypeScript version 5.2 is the least supported version starting from this release of Angular.
  • The @Component decorator now supports a styleUrl attribute. This allows for specifying a single stylesheet path as a string, simplifying the process of linking a component to a specific style sheet. Previously, even for a single stylesheet, an array was required under styleUrls.

Conclusion

With the launch of Angular 17, the Angular Renaissance is now in full swing. This release has garnered such positive feedback that developers are showing renewed interest in the framework and are looking forward to leveraging it in upcoming projects. However, it's important to note that it might take some time for IDEs to adapt to the new templating syntax fully. While this transition is underway, rest assured that you can still write perfectly valid code using the old templating syntax, as all the changes in Angular 17 are backward compatible.

Looking ahead, the future of Angular appears brighter than ever, and we can't wait to see what the next release has in store!

This Dot Labs is a development consultancy that is trusted by top industry companies, including Stripe, Xero, Wikimedia, Docusign, and Twilio. This Dot takes a hands-on approach by providing tailored development strategies to help you approach your most pressing challenges with clarity and confidence. Whether it's bridging the gap between business and technology or modernizing legacy systems, you’ll find a breadth of experience and knowledge you need. Check out how This Dot Labs can empower your tech journey.

You might also like

Functional Programming in TypeScript using the fp-ts Library: Exploring Task and TaskEither Operators cover image

Functional Programming in TypeScript using the fp-ts Library: Exploring Task and TaskEither Operators

Introduction: Welcome back to our blog series on Functional Programming in TypeScript using the fp-ts library. In the previous three blog posts, we covered essential concepts such as the pipe and flow operators, Option type, and various methods and operators like fold, fromNullable, getOrElse, map, flatten, and chain. In this fourth post, we will delve into the powerful Task and TaskEither operators, understanding their significance, and exploring practical examples to showcase their usefulness. Understanding Task and TaskEither: Before we dive into the examples, let's briefly recap what Task and TaskEither are and why they are valuable in functional programming. Task: In functional programming, a Task represents an asynchronous computation that may produce a value or an error. It allows us to work with asynchronous operations in a pure and composable manner. Tasks are lazy and only start executing when we explicitly run them. They can be thought of as a functional alternative to Promises. Now, let's briefly introduce the Either type and its significance in functional programming since this concept, merged with Task gives us the full power of TaskEither. Either: Either is a type that represents a value that can be one of two possibilities: a value of type Left or a value of type Right. Conventionally, the Left type represents an error or failure case, while the Right type represents a successful result. Using Either, we can explicitly handle and propagate errors in a functional and composable way. Example: Handling Division with Either Suppose we have a function divide that performs a division operation. Instead of throwing an error, we can use Either to handle the potential division by zero scenario. Here's an example: `ts import { Either, left, right } from 'fp-ts/lib/Either'; const divide: (a: number, b: number) => Either = (a, b) => { if (b === 0) { return left('Error: Division by zero'); } return right(a / b); }; const result = divide(10, 2); result.fold( (error) => console.log(Error: ${error}`), (value) => console.log(Result: ${value}`) ); ` In this example, the divide function returns an Either type. If the division is successful, it returns a Right value with the result. If the division by zero occurs, it returns a Left value with an error message. We then use the fold function to handle both cases, printing the appropriate message to the console. TaskEither: TaskEither combines the benefits of both Task and Either. It represents an asynchronous computation that may produce a value or an error, just like Task, but also allows us to handle potential errors using the Either type. This enables us to handle errors in a more explicit and controlled manner. Examples: Let's explore some examples to better understand the practical applications of Task and TaskEither operators. Example 1: Fetching Data from an API Suppose we want to fetch data from an API asynchronously. We can use the Task operator to encapsulate the API call and handle the result using the Task's combinators. In the example below, we define a fetchData` function that returns a Task representing the API call. We then use the `fold` function to handle the success and failure cases of the Task. If the Task succeeds, we return a new Task with the fetched data. If it fails, we return a Task with an error message. Finally, we use the `getOrElse` function to handle the case where the Task returns `None`. `typescript import { pipe } from 'fp-ts/lib/function'; import { Task } from 'fp-ts/lib/Task'; import { fold } from 'fp-ts/lib/TaskEither'; import { getOrElse } from 'fp-ts/lib/Option'; const fetchData: Task = () => fetch('https://api.example.com/data'); const handleData = pipe( fetchData, fold( () => Task.of('Error: Failed to fetch data'), (data) => Task.of(Fetched data: ${data}`) ), getOrElse(() => Task.of('Error: Data not found')) ); handleData().then(console.log); ` Example 2: Performing Computation with Error Handling Let's say we have a function divide` that performs a computation and may throw an error. We can use TaskEither to handle the potential error and perform the computation asynchronously. In the example below, we define a `divideAsync` function that takes two numbers and returns a TaskEither representing the division operation. We use the `tryCatch` function to catch any potential errors thrown by the `divide` function. We then use the `fold` function to handle the success and failure cases of the TaskEither. If the TaskEither succeeds, we return a new TaskEither with the result of the computation. If it fails, we return a TaskEither with an error message. Finally, we use the `map` function to transform the result of the TaskEither. `typescript import { pipe } from 'fp-ts/lib/function'; import { TaskEither, tryCatch } from 'fp-ts/lib/TaskEither'; import { fold } from 'fp-ts/lib/TaskEither'; import { map } from 'fp-ts/lib/TaskEither'; const divide: (a: number, b: number) => number = (a, b) => { if (b === 0) { throw new Error('Division by zero'); } return a / b; }; const divideAsync: (a: number, b: number) => TaskEither = (a, b) => tryCatch(() => divide(a, b), (error) => new Error(String(error))); const handleComputation = pipe( divideAsync(10, 2), fold( (error) => TaskEither.left(Error: ${error.message}`), (result) => TaskEither.right(Result: ${result}`) ), map((result) => Computation: ${result}`) ); handleComputation().then(console.log); ` In the first example, we saw how to fetch data from an API using Task and handle the success and failure cases using fold and getOrElse functions. This allows us to handle different scenarios, such as successful data retrieval or error handling when the data is not available. In the second example, we demonstrated how to perform a computation that may throw an error using TaskEither. We used tryCatch to catch potential errors and fold to handle the success and failure cases. This approach provides a more controlled way of handling errors and performing computations asynchronously. Conclusion: In this blog post, we explored the Task` and `TaskEither` operators in the `fp-ts` library. We learned that Task allows us to work with asynchronous computations in a pure and composable manner, while TaskEither combines the benefits of Task and Either, enabling us to handle potential errors explicitly. By leveraging the concepts we have covered so far, such as pipe, flow, Option, fold, map, flatten, and chain, we can build robust and maintainable functional programs in TypeScript using the fp-ts library. Stay tuned for the next blog post in this series, where we will continue our journey into the world of functional programming....

Understanding Vue's Reactive Data cover image

Understanding Vue's Reactive Data

Introduction Web development has always been about creating dynamic experiences. One of the biggest challenges developers face is managing how data changes over time and reflecting these changes in the UI promptly and accurately. This is where Vue.js, one of the most popular JavaScript frameworks, excels with its powerful reactive data system. In this article, we dig into the heart of Vue's reactivity system. We unravel how it perfectly syncs your application UI with the underlying data state, allowing for a seamless user experience. Whether new to Vue or looking to deepen your understanding, this guide will provide a clear and concise overview of Vue's reactivity, empowering you to build more efficient and responsive Vue 3 applications. So, let’s kick off and embark on this journey to decode Vue's reactive data system. What is Vue's Reactive Data? What does it mean for data to be ”'reactive”? In essence, when data is reactive, it means that every time the data changes, all parts of the UI that rely on this data automatically update to reflect these changes. This ensures that the user is always looking at the most current state of the application. At its core, Vue's Reactive Data is like a superpower for your application data. Think of it like a mirror - whatever changes you make in your data, the user interface (UI) reflects these changes instantly, like a mirror reflecting your image. This automatic update feature is what we refer to as “reactivity”. To visualize this concept, let's use an example of a simple Vue application displaying a message on the screen: `javascript import { createApp, reactive } from 'vue'; const app = createApp({ setup() { const state = reactive({ message: 'Hello Vue!' }); return { state }; } }); app.mount('#app'); ` In this application, 'message' is a piece of data that says 'Hello Vue!'. Let's say you change this message to 'Goodbye Vue!' later in your code, like when a button is clicked. `javascript state.message = 'Goodbye Vue!'; ` With Vue's reactivity, when you change your data, the UI automatically updates to 'Goodbye Vue!' instead of 'Hello Vue!'. You don't have to write extra code to make this update happen - Vue's Reactive Data system takes care of it. How does it work? Let's keep the mirror example going. Vue's Reactive Data is the mirror that reflects your data changes in the UI. But how does this mirror know when and what to reflect? That's where Vue's underlying mechanism comes into play. Vue has a behind-the-scenes mechanism that helps it stay alerted to any changes in your data. When you create a reactive data object, Vue doesn't just leave it as it is. Instead, it sends this data object through a transformation process and wraps it up in a Proxy. Proxy objects are powerful and can detect when a property is changed, updated, or deleted. Let's use our previous example: `javascript import { createApp, reactive } from 'vue'; const app = createApp({ setup() { const state = reactive({ message: 'Hello Vue!' }); return { state }; } }); app.mount('#app'); ` Consider our “message” data as a book in a library. Vue places this book (our data) within a special book cover (the Proxy). This book cover is unique - it's embedded with a tracking device that notifies Vue every time someone reads the book (accesses the data) or annotates a page (changes the data). In our example, the reactive function creates a Proxy object that wraps around our state object. When you change the 'message': `javascript state.message = 'Goodbye Vue!'; ` The Proxy notices this (like a built-in alarm going off) and alerts Vue that something has changed. Vue then updates the UI to reflect this change. Let’s look deeper into what Vue is doing for us and how it transforms our object into a Proxy object. You don't have to worry about creating or managing the Proxy; Vue handles everything. `javascript const state = reactive({ message: 'Hello Vue!' }); // What vue is doing behind the scenes: function reactive(obj) { return new Proxy(obj, { // target = state and key = message get(target, key) { track(target, key) return target[key] }, set(target, key, value) { target[key] = value // Here Vue will trigger its reactivity system to update the DOM. trigger(target, key) } }) } ` In the example above, we encapsulate our object, in this case, “state”, converting it into a Proxy object. Note that within the second argument of the Proxy, we have two methods: a getter and a setter. The getter method is straightforward: it merely returns the value, which in this instance is “state.message” equating to 'Hello Vue!' Meanwhile, the setter method comes into play when a new value is assigned, as in the case of “state.message = ‘Hey young padawan!’”. Here, “value” becomes our new 'Hey young padawan!', prompting the property to update. This action, in turn, triggers the reactivity system, which subsequently updates the DOM. Venturing Further into the Depths If you have been paying attention to our examples above, you might have noticed that inside the Proxy` method, we call the functions `track` and `trigger` to run our reactivity. Let’s try to understand a bit more about them. You see, Vue 3 reactivity data is more about Proxy objects. Let’s create a new example: `vue import { reactive, watch, computed, effect } from "vue"; const state = reactive({ showSword: false, message: "Hey young padawn!", }); function changeMessage() { state.message = "It's dangerous to go alone! Take this."; } effect(() => { if (state.message === "It's dangerous to go alone! Take this.") { state.showSword = true; } }); {{ state.message }} Click! ` In this example, when you click on the button, the message's value changes. This change triggers the effect function to run, as it's actively listening for any changes in its dependencies__. How does the effect` property know when to be called? Vue 3 has three main functions to run our reactivity: effect`, `track`, and `trigger`. The effect` function is like our supervisor. It steps in and takes action when our data changes – similar to our effect method, we will dive in more later. Next, we have the track` function. It notes down all the important data we need to keep an eye on. In our case, this data would be `state.message`. Lastly, we've got the trigger` function. This one is like our alarm bell. It alerts the `effect` function whenever our important data (the stuff `track` is keeping an eye on) changes. In this way, trigger`, `track`, and `effect` work together to keep our Vue application reacting smoothly to changes in data. Let’s go back to them: `javascript function reactive(obj) { return new Proxy(obj, { get(target, key) { // target = state & key = message track(target, key) // keep an eye for this return target[key] }, set(target, key, value) { target[key] = value trigger(target, key) // trigger the effects! } }) } ` Tracking (Dependency Collection) Tracking is the process of registering dependencies between reactive objects and the effects that depend on them. When a reactive property is read, it's "tracked" as a dependency of the current running effect. When we execute track()`, we essentially store our effects in a Set object. But what exactly is an "effect"? If we revisit our previous example, we see that the effect method must be run whenever any property changes. This action — running the effect method in response to property changes — is what we refer to as an "Effect"! (computed property, watcher, etc.) > Note: We'll outline a basic, high-level overview of what might happen under the hood. Please note that the actual implementation is more complex and optimized, but this should give you an idea of how it works. Let’s see how it works! In our example, we have the following reactive object: `javascript const state = reactive({ showSword: false, message: "Hey young padawn!", }); // which is transformed under the hood to: function reactive(obj) { return new Proxy(obj, { get(target, key) { // target = state | key = message track(target, key) // keep an eye for this return target[key] }, set(target, key, value) { target[key] = value trigger(target, key) // trigger the effects! } }) } ` We need a way to reference the reactive object with its effects. For that, we use a WeakMap. Which type is going to look something like this: `typescript WeakMap>> ` We are using a WeakMap to set our object state as the target (or key). In the Vue code, they call this object `targetMap`. Within this targetMap` object, our value is an object named `depMap` of Map type. Here, the keys represent our properties (in our case, that would be `message` and `showSword`), and the values correspond to their effects – remember, they are stored in a Set that in Vue 3 we refer to as `dep`. Huh… It might seem a bit complex, right? Let's make it more straightforward with a visual example: With the above explained, let’s see what this Track` method kind of looks like and how it uses this `targetMap`. This method essentially is doing something like this: `javascript let activeEffect; // we will see more of this later function track(target, key) { if (activeEffect) { // depsMap` maps targets to their keys and dependent effects let depsMap = targetMap.get(target); // If we don't have a depsMap for this target in our targetMap`, create one. if (!depsMap) { depsMap = new Map(); targetMap.set(target, depsMap); } let dep = depsMap.get(key); if (!dep) { // If we don't have a set of effects for this key in our depsMap`, create one. dep = new Set(); depsMap.set(key, dep); } // Add the current effect as a dependency dep.add(activeEffect); } } ` At this point, you have to be wondering, how does Vue 3 know what activeEffect` should run? Vue 3 keeps track of the currently running effect by using a global variable. When an effect is executed, Vue temporarily stores a reference to it in this global variable, allowing the track` function to access the currently running effect and associate it with the accessed reactive property. This global variable is called inside Vue as `activeEffect`. Vue 3 knows which effect is assigned to this global variable by wrapping the effects functions in a method that invokes the effect whenever a dependency changes. And yes, you guessed, that method is our effect` method. `javascript effect(() => { if (state.message === "It's dangerous to go alone! Take this.") { state.showSword = true; } }); ` This method behind the scenes is doing something similar to this: `javascript function effect(update) { //the function we are passing in const effectMethod = () => { // Assign the effect as our activeEffect` activeEffect = effectMethod // Runs the actual method, also triggering the get` trap inside our proxy update(); // Clean the activeEffect after our Effect has finished activeEffect = null } effectMethod() } ` The handling of activeEffect` within Vue's reactivity system is a dance of careful timing, scoping, and context preservation. Let’s go step by step on how this is working all together. When we run our `Effect` method for the first time, we call the `get` trap of the Proxy. `javascript function effect(update) const effectMethod = () => { // Storing our active effect activeEffect = effectMethod // Running the effect update() ... } ... } effect(() => { // we call the the get` trap when getting our `state.message` if (state.message === "It's dangerous to go alone! Take this.") { state.showSword = true; } }); ` When running the get` trap, we have our `activeEffect` so we can store it as a dependency. `javascript function reactive(obj) { return new Proxy(obj, { // Gets called when our effect runs get(target, key) { track(target, key) // Saves the effect return target[key] }, // ... (other handlers) }) } function track(target, key) { if (activeEffect) { //... rest of the code // Add the current effect as a dependency dep.add(activeEffect); } } ` This coordination ensures that when a reactive property is accessed within an effect, the track function knows which effect is responsible for that access. Trigger Method Our last method makes this Reactive system to be complete. The trigger` method looks up the dependencies for the given target and key and re-runs all dependent effects. `javascript function trigger(target, key) { const depsMap = targetMap.get(target); if (!depsMap) return; // no dependencies, no effects, no need to do anything const dep = depsMap.get(key); if (!dep) return; // no dependencies for this key, no need to do anything // all dependent effects to be re-run dep.forEach(effect => { effect() }); } ` Conclusion Diving into Vue 3's reactivity system has been like unlocking a hidden superpower in my web development toolkit, and honestly, I've had a blast learning about it. From the rudimentary elements of reactive data and instantaneous UI updates to the intricate details involving Proxies, track and trigger functions, and effects, Vue 3's reactivity is an impressively robust framework for building dynamic and responsive applications. In our journey through Vue 3's reactivity, we've uncovered how this framework ensures real-time and precise updates to the UI. We've delved into the use of Proxies to intercept and monitor variable changes and dissected the roles of track and trigger functions, along with the 'effect' method, in facilitating seamless UI updates. Along the way, we've also discovered how Vue ingeniously manages data dependencies through sophisticated data structures like WeakMaps and Sets, offering us a glimpse into its efficient approach to change detection and UI rendering. Whether you're just starting with Vue 3 or an experienced developer looking to level up, understanding this reactivity system is a game-changer. It doesn't just streamline the development process; it enables you to create more interactive, scalable, and maintainable applications. I love Vue 3, and mastering its reactivity system has been enlightening and fun. Thanks for reading, and as always, happy coding!...

The Renaissance of PWAs cover image

The Renaissance of PWAs

What Are PWAs? Progressive Web Apps, or PWAs, are not a new concept. In fact, they have been around for years, and have been adopted by companies such as Starbucks, Uber, Tinder, and Spotify. Here at This Dot, we have written numerous blog posts on PWAs. PWAs are essentially web applications that utilize modern web technologies to deliver a user experience akin to native apps. They can work offline, send push notifications, and even be added to a user's home screen, thus blurring the boundaries between web and native apps. PWAs are built using standard web technologies like HTML, CSS, and JavaScript. However, they leverage advanced web APIs to deliver enhanced capabilities. Most web apps can be transformed into PWAs by incorporating certain features and adhering to standards. The keystones of PWAs are the service worker and the web app manifest. Service workers enable offline operation and background syncing by acting as network proxies, managing requests programmatically. The web app manifest, on the other hand, gives the PWA a native-like presence on the user's device, specifying its appearance when installed. Looking Back The concept of PWAs was introduced by Google engineers Alex Russell and Frances Berriman in 2015, even though Steve Jobs had already discussed the idea of web apps that resembled and behaved like native apps as early as 2007. However, despite the widespread adoption of PWAs over the years, Apple's approach to PWAs drastically changed after Steve Jobs' 2007 presentation, distinguishing it from other tech giants such as Google and Microsoft. As a leader in technological innovation, Apple was notably slower in adopting PWA technology, much of which can be attributed to its business model and the ecosystem it built around the App Store. For example, Safari, Apple's web browser, has historically been slow to adopt the latest web standards and APIs crucial for PWAs. Features such as push notifications, background sync, and access to certain hardware functionalities were unsupported or only partially supported for a long time. As a result, the PWA experience on iOS/iPadOS was not - and to some extent, still isn't - on par with that provided by Android. Despite the varying degrees of support from different vendors, PWAs have seen a significant increase in adoption since 2015, both by businesses and users, due to their cross-platform nature, offline capabilities, and the enhanced user experience they offer. Major corporations like Twitter, Pinterest, and Alibaba have launched PWAs, leading to substantial increases in user engagement and session duration. For instance, according to a 2017 Pinterest case study, Pinterest's PWA led to a 60% increase in core engagements and a 44% increase in user-generated ad revenue. Google and Microsoft have also championed this technology, integrating more PWA support into their platforms. Google highlighted the importance of PWAs for the mobile web, while Microsoft sought to populate its Windows Store with PWAs. Apple's Shift Towards PWAs Despite slower adoption and limited support, Apple isn't completely dismissing PWAs. Recent updates have indicated some promising improvements in PWA capabilities on both iOS/iPadOS and MacOS. For instance, in iOS/iPadOS 16 released last year, Apple added notifications for Home Screen web apps, utilizing the Web Push standard with support for badging. They also included an API for iOS/iPadOS browsers to facilitate the 'Add to Home Screen' feature. The forthcoming Safari 17 and MacOS Sonoma releases, announced at June's WWDC, promise even more significant changes, most notably: Installing Web Apps on MacOS, iOS, and iPadOS Any web app, not just PWAs, can now be added to the MacOS dock from the File menu. Once added, these web apps will open in their own window and integrate with operating system features such as the Stage Manager, Screen Time, Notifications, and Focus. They will also have their own isolated storage, and any cookies present in the Safari browser for that web app at the time of installation will be transferred to this isolated storage. This means many users will not need to re-authenticate to web apps after installing them locally. PWAs, in particular, can control the appearance and behavior of the installed web app via the PWA manifest. For instance, if your web app already includes navigation controls, or if they're not necessary in the context of the app, you can manage whether the navigation buttons are displayed by setting the display` configuration option in the manifest to `standalone`. The `display` option will also be taken into consideration in iOS/iPadOS, where standalone web apps will become *Home Screen web apps*. These apps offer a standalone, app-like experience on iOS, complete with separate cookies and storage from the browser, and improved notification handling. Improved Notifications Apple initially added support for notifications in iOS/iPadOS 16, but Safari 17 and MacOS Sonoma take it a step further. If you've already implemented Web Push according to web standards, then push notifications should work for your web page as a web app on Mac without any additional effort. Moreover, the silent` property is now taken into account, and there are several improvements to the Notifications API to enhance its reliability. These recent updates put the support for notifications on Mac on par with iOS/iPadOS, including support for badging, and seamless integration with the Focus mode. Improved API Over the past year, Apple has also introduced several other API-level improvements. The enhancements to the User Activation API aid in determining whether a function that depends on user activation, such as requesting permission to send notifications, is called. Safari 16 updated the un-prefixed Fullscreen API, and introduced preliminary support for the Screen Orientation API. Safari 17 in particular has improved support for the Storage API and added support for ReadableStream`. The Renaissance of PWAs? With the new PWA-related features in the Apple ecosystem, it's hard not to wonder if we are witnessing a renaissance of PWAs. Initially praised for their ability to leverage web technology to create app-like experiences, PWAs went through a period of relative stagnation, especially on Apple's platforms. For a time, Apple was noticeably more conservative in their implementation of PWA features. However, their recent bolstering of PWA support in Safari signals a significant shift, aligning the browser with other major platforms such as Google Chrome and Microsoft Edge, both of which have long supported PWAs. The implications of this shift are profound. This widespread and robust support for PWAs across all major platforms could effectively reduce the gap between web applications and native applications. PWAs, with their promise of a single, consistent experience across all devices, could become the preferred choice for businesses and developers. The cost-effectiveness of developing and maintaining one PWA versus separate applications for multiple platforms is an undeniable benefit. The fact that all these platforms are now heavily supporting PWAs might suggest an industry-wide shift toward a more unified and simplified development paradigm, hinting that indeed, we could be on the verge of a PWA renaissance....

I Broke My Hand So You Don't Have To (First-Hand Accessibility Insights) cover image

I Broke My Hand So You Don't Have To (First-Hand Accessibility Insights)

We take accessibility quite seriously here at This Dot because we know it's important. Still, throughout my career, I've seen many projects where accessibility was brushed aside for reasons like "our users don't really use keyboard shortcuts" or "we need to ship fast; we can add accessibility later." The truth is, that "later" often means "never." And it turns out, anyone could break their hand, like I did. I broke my dominant hand and spent four weeks in a cast, effectively rendering it useless and forcing me to work left-handed. I must thus apologize for the misleading title; this post should more accurately be dubbed "second-hand" accessibility insights. The Perspective of a Developer Firstly, it's not the end of the world. I adapted quickly to my temporary disability, which was, for the most part, a minor inconvenience. I had to type with one hand, obviously slower than my usual pace, but isn't a significant part of a software engineer's work focused on thinking? Here's what I did and learned: - I moved my mouse to the left and started using it with my left hand. I adapted quickly, but the experience wasn't as smooth as using my right hand. I could perform most tasks, but I needed to be more careful and precise. - Many actions require holding a key while pressing a mouse button (e.g., visiting links from the IDE), which is hard to do with one hand. - This led me to explore trackpad options. Apart from the Apple Magic Trackpad, choices were limited. As a Windows user (I know, sorry), that wasn't an option for me. I settled for a cheap trackpad from Amazon. A lot of tasks became easier; however, the trackpad eventually malfunctioned, sending me back to the mouse. - I don't know a lot of IDE shortcuts. I realized how much I've been relying on a mouse for my work, subconsciously refusing to learn new keyboard shortcuts (I'll be returning my senior engineer license shortly). So I learned a few new ones, which is good, I guess. - Some keyboard shortcuts are hard to press with one hand. If you find yourself in a similar situation, you may need to remap some of them. - Copilot became my best friend, saving me from a lot of slow typing, although I did have to correct and rewrite many of its suggestions. The Perspective of a User As a developer, I was able to get by and figure things out to be able to work effectively. As a user, however, I got to experience the other side of the coin and really feel the accessibility (or lack thereof) on the web. Here are a few insights I gained: - A lot of websites apparently tried_ to implement keyboard navigation, but failed miserably. For example, a big e-commerce website I tried to use to shop for the aforementioned trackpad seemed to work fine with keyboard navigation at first, but once I focused on the search field, I found myself unable to tab out from it. When you make the effort to implement keyboard navigation, please make sure it works properly and it doesn't get broken with new changes. I wholeheartedly recommend having e2e tests (e.g. with Playwright) that verify the keyboard navigation works as expected. - A few websites and web apps I tried to use were completely unusable with the keyboard and were designed to be used with a mouse only. - Some sites had elaborate keyboard navigation, with custom keyboard shortcuts for different functionality. That took some time to figure out, and I reckon it's not as intuitive as the designers thought it would be. Once a user learns the shortcuts, however, it could make their life easier, I suppose. - A lot of interactive elements are much smaller than they should be, making it hard to accurately click on them with your weaker hand. Designers, I beg you, please make your buttons bigger. I once worked on an application that had a "gloves mode" for environments where the operators would be using gloves, and I feel like maybe the size we went with for the "gloves mode" should be the standard everywhere, especially as screens get bigger and bigger. - Misclicking is easy, especially using your weaker hand. Be it a mouse click or just hitting an Enter key on accident. Kudos to all the developers who thought about this and implemented a confirmation dialog or other safety measures to prevent users from accidentally deleting or posting something. I've however encountered a few apps that didn't have any of these, and those made me a bit anxious, to be honest. If this is something you haven't thought about when developing an app, please start doing so, you might save someone a lot of trouble. Some Second-Hand Insights I was only a little bit impaired by being temporarily one-handed and it was honestly a big pain. In this post, I've focused on my anecdotal experience as a developer and a user, covering mostly keyboard navigation and mouse usage. I can only imagine how frustrating it must be for visually impaired users, or users with other disabilities, to use the web. I must confess I haven't always been treating accessibility as a priority, but I've certainly learned my lesson. I will try to make sure all the apps I work on are accessible and inclusive, and I will try to test not only the keyboard navigation, ARIA attributes, and other accessibility features, but also the overall experience of using the app with a screen reader. I hope this post will at least plant a little seed in your head that makes you think about what it feels like to be disabled and what would the experience of a disabled person be like using the app you're working on. Conclusion: The Humbling Realities of Accessibility The past few weeks have been an eye-opening journey for me into the world of accessibility, exposing its importance not just in theory but in palpable, daily experiences. My short-term impairment allowed me to peek into a life where simple tasks aren't so simple, and convenient shortcuts are a maze of complications. It has been a humbling experience, but also an illuminating one. As developers and designers, we often get caught in the rush to innovate and to ship, leaving behind essential elements that make technology inclusive and humane. While my temporary disability was an inconvenience, it's permanent for many others. A broken hand made me realize how broken our approach towards accessibility often is. The key takeaway here isn't just a list of accessibility tips; it's an earnest appeal to empathize with your end-users. "Designing for all" is not a checkbox to tick off before a product launch; it's an ongoing commitment to the understanding that everyone interacts with technology differently. When being empathetic and sincerely thinking about accessibility, you never know whose life you could be making easier. After all, disability isn't a special condition; it's a part of the human condition. And if you still think "Our users don't really use keyboard shortcuts" or "We can add accessibility later," remember that you're not just failing a compliance checklist, you're failing real people....