Skip to content

Roo Custom Modes

Roo Custom Modes

Roo Custom Modes

Roo Code is an extension for VS Code that provides agentic-style AI code editing functionality. You can configure Roo to use any LLM model and version you want by providing API keys. Once configured, Roo allows you to easily switch between models and provide custom instructions through what Roo calls "modes."

Roo Modes can be thought of as a "personality" that the LLM takes on. When you create a new mode in Roo, you provide it with a description of what personality Roo should take on, what LLM model should be used, and what custom instructions the mode should follow. You can also define workspace-level instructions via a .roo/rules-{modeSlug}/ directory at your project root with markdown files inside. Having different modes allows developers to quickly fine-tune how the Roo Code agent performs its tasks.

Roo ships out-of-the-box with some default modes: Code Mode, Architect Mode, Ask Mode, Debug Mode, and Orchestrator Mode. These can get you far, but I have expanded on this list with a few custom modes I have made for specific scenarios I run into every day as a software engineer.

My Custom Modes

📜 Documenter Mode

I created this mode to help me with generating documentation for legacy codebases my team works with. I use this mode to help produce documentation interactively with me while I read a codebase.

Mode Definition

You are Roo, a highly skilled technical documentation writer with extensive knowledge in many programming languages, frameworks, design patterns, and best practices. You are working alongside a human software engineer, and your responsibility is to provide documentation around the code you are working on. You will be asked to provide documentation in the form of comments, markdown files, or other formats as needed.

Mode-specific Instructions

You will respect the following rules:

  • You will not write any code, only markdown files.
  • In your documentation, you will provide references to specific files and line numbers of code you are referencing.
  • You will not attempt to execute any commands.
  • You will not attempt to run the application in the browser.
  • You will only look at the code and infer functionality from that.

👥 Pair Programmer Mode

I created a “Pair Programmer” mode to serve as my personal coding partner. It’s designed to work in a more collaborative way with a human software engineer. When I want to explore multiple ideas quickly, I switch to this mode to rapidly iterate on code with Roo. In this setup, I take on the role of the navigator—guiding direction, strategy, and decisions—while Roo handles the “driving” by writing and testing the code we need.

Mode Definition

You are Roo, a highly skilled software engineer with extensive knowledge in many programming languages, frameworks, design patterns, and best practices. You are working alongside a human software engineer who will be checking your work and providing instructions. If you get stuck, ask for help and we will solve problems together.

Mode-specific Instructions

You will respect the following rules:

  • You will not install new 3rd party libraries without first providing usage metrics (stars, downloads, latest version update date).
  • You will not do any additional tasks outside of what you have been told to do.
  • You will not assume to do any additional work outside of what you have been instructed to do.
  • You will not open the browser and test the application. Your pairing partner will do that for you.
  • You will not attempt to open the application or the URL at which the application is running. Assume your pairing partner will do that for you.
  • You will not attempt to run npm run dev or similar commands. Your pairing partner will do that for you.
  • You will not attempt to run a development server of any kind. Your pairing partner will handle that for you.
  • You will not write tests unless instructed to.
  • You will not make any git commits unless explicitly told to do so.
  • You will not make suggestions of commands to run the software or execute the test suite. Assume that your human counterpart has the application running and will check your work.

🧑‍🏫 Project Manager

I created this mode to help me write tasks for my team with clear and actionable acceptance criteria.

Mode Definition

You are a professional project manager. You are highly skilled in breaking down large tasks into bite-sized pieces that are actionable by an engineering team or an LLM performing engineering tasks. You analyze features carefully and detail out all edge cases and scenarios so that no detail is missed.

Mode-specific Instructions

Think creatively about how to detail out features. Provide a technical and business case explanation about feature value. Break down features and functionality in the following way. The following example would be for user login:

User Login: As a user, I can log in to the application so that I can make changes. This prevents anonymous individuals from accessing the admin panel.

Acceptance Criteria

  • On the login page, I can fill in my email address:
    • This field is required.
    • This field must enforce email format validation.
  • On the login page, I can fill in my password:
    • This field is required.
    • The input a user types into this field is hidden.
  • On failure to log in, I am provided an error dialog:
    • The error dialog should be the same if the email exists or not so that bad actors cannot glean info about active user accounts in our system.
    • Error dialog should be a red box pinned to the top of the page.
    • Error dialog can be dismissed.
  • After 4 failed login attempts, the form becomes locked:
    • Display a dialog to the user letting them know they can try again in 30 minutes.
    • Form stays locked for 30 minutes and the frontend will not accept further submissions.

🦾 Agent Consultant

I created this mode for assistance with modifying my existing Roo modes and rules files as well as generating higher quality prompts for me. This mode leverages the Context7 MCP to keep up-to-date with documentation on Roo Code and prompt engineering best practices.

Mode Definition

You are an AI Agent coding expert. You are proficient in coding with agents and defining custom rules and guidelines for AI powered coding agents. Your specific expertise is in the Roo Code tool for VS Code are you are exceptionally capable at creating custom rules files and custom mode.

This is your workflow that you should always follow:

    1. Begin every task by retrieving relevant documentation from context7
    2. First retrieve Roo documentation using get-library-docs with "/roovetgit/roo-code-docs"
    3. Then retrieve prompt engineering best practices using get-library-docs with “/dair-ai/prompt-engineering-guide"
  1. Reference this documentation explicitly in your analysis and recommendations
  2. Only after consulting these resources, proceed with the task

Wrapping It Up

Roo’s “Modes” have become an essential part of how I leverage AI in my day-to-day work as a software engineer. By tailoring each mode to specific tasks—whether it’s generating documentation, pairing on code, writing project specs, or improving prompt quality—I’ve been able to streamline my workflow and get more done with greater clarity and precision.

Roo’s flexibility lets me define how it should behave in different contexts, giving me fine-grained control over how I interact with AI in my coding environment. Roo also has the capability of defining custom modes per project if that is needed by your team. If you find yourself repeating certain workflows or needing more structure in your interactions with AI tools, I highly recommend experimenting with your own custom modes. The payoff in productivity and developer experience is absolutely worth it.

This Dot is a consultancy dedicated to guiding companies through their modernization and digital transformation journeys. Specializing in replatforming, modernizing, and launching new initiatives, we stand out by taking true ownership of your engineering projects.

We love helping teams with projects that have missed their deadlines or helping keep your strategic digital initiatives on course. Check out our case studies and our clients that trust us with their engineering.

You might also like

“Recognize leadership behavior early. Sometimes people don’t even realize it in themselves…” Kelly Vaughn on Product Leadership, Creating Pathways for Women in Tech, & Conferences cover image

“Recognize leadership behavior early. Sometimes people don’t even realize it in themselves…” Kelly Vaughn on Product Leadership, Creating Pathways for Women in Tech, & Conferences

Some leaders build products. Some lead engineering teams. Kelly Vaughn is doing both. As Director of Engineering at Spot AI—a company building video intelligence software—Kelly recently expanded her role to oversee both Product and Engineering for their VMS offering. That shift means juggling strategy, execution, and team development, all while helping others step confidently into leadership themselves. And yes, she still finds time to speak at conferences and answer DMs from people navigating the same transitions she once did. We spoke with Kelly about spotting leadership potential early, why ambiguity doesn’t have to feel chaotic, and the lesson she learned the hard way about managing up. Stepping into Product Leadership Kelly’s new title might look like a promotion on paper, but the shift is more philosophical than anything. > “Engineering leadership is about execution,” she says. “Product leadership is about defining why we’re building something in the first place.” Now leading Product and Engineering for Spot AI’s VMS product, she’s talking to customers, researching market trends, and making smart bets on where to invest next. It’s a role she’s clearly energized by. > “I’m really looking forward to dedicating time to shaping our product’s future.” Thriving in Ambiguity Some people panic when problems are fuzzy or undefined. Others use it as fuel. > “There are two key traits I see in people who handle ambiguity well,” Kelly says. “They stay calm under stress, and they know how to form a hypothesis from a vague problem statement.” That means asking the right questions, taking action quickly, and being totally okay with pivoting when something doesn’t pan out. It’s no surprise that these same traits overlap with great product thinking—a mindset she’s now leaning into more than ever. > “I do some of my best work when navigating uncertainty,” she adds. Read Kelly’s blog on embracing ambiguity in Product! Creating Leadership Pathways for Women in Tech When asked how leaders can create more leadership pathways for women in software engineering, Kelly stressed that it is not a passive process. > “Senior leaders need to be proactive,” Kelly says. “That starts with identifying and addressing bias across hiring, promotions, and day-to-day interactions.” She emphasizes psychological safety—so women feel confident advocating for themselves and others. But she also knows not everyone feels ready to raise their hand. > “Don’t wait for someone to ask for a title change or a growth opportunity. Recognize leadership behavior early. Sometimes people don’t even realize it in themselves yet.” On Stage, In Real Life Kelly’s no stranger to the tech conference circuit—often giving talks on engineering leadership and team growth. Her biggest source of inspiration? Conversations with people trying to make the leap into leadership. > “I might use the same slide deck at three conferences,” she says, “but the talk itself will be different every time.” Rather than sticking to a script, she likes to share recent examples from her own work, tailoring the delivery to the audience in front of her. It keeps things relevant, grounded, and never too polished. Between setting product strategy, mentoring the next generation of leaders, and hopping from one tech conference to the next, Kelly Vaughn is showing what it means to lead with clarity—even when things are unclear. She’s not here to tell you it’s easy. But she will tell you it’s worth it. Connect with Kelly Vaughn on Bluesky. Sign up for Kelly Vaughn’s Newsletter! Sticker Illustration by Jacob Ashley....

Increasing development velocity with Cursor cover image

Increasing development velocity with Cursor

If you’re a developer, you’ve probably heard of Cursor by now and have either tried it out or are just curious to learn more about it. Cursor is a fork of VSCode with a ton of powerful AI/LLM-powered features added on. For around $20/month, I think it’s the best value in the AI coding space. Tech giants like Shopify and smaller companies like This Dot Labs have purchased Cursor subscriptions for their developers with the goal of increased productivity. I have been using Cursor heavily for a few months now and am excited to share how it’s impacted me personally. In this post, we will cover some of the basic features, use cases, and I’ll share some tips and tricks I’ve learned along the way. If you love coding and building like me, I hope this post will help you unleash some of the superpowers Cursor’s AI coding features make possible. Let’s jump right in! Cursor 101 The core tools of the Cursor tool belt are Autocomplete, Ask, and Agent. Feature: Autocomplete The first thing that got me hooked was Autocomplete. It just worked so much better than the tools I had used previously, like GitHub Copilot. It was quicker and smarter, and I could immediately notice the amount of keystrokes that it was saving me. This feature is great because it doesn’t really require any work or skilled prompting from the user. There are a couple of tricks for getting a little bit more out of it that I will share later, but for now, just enjoy the ride! Feature: Ask If you’ve interacted with AI/LLMs before, like ChatGPT - this is what the Ask feature is. It’s just a chat feature you can easily provide context to from your code base and choose which Model to chat with. This feature is best suited for just asking more general questions that you might have queried Google or Stack Overflow for in the past. It’s also good for planning how to implement a feature you’re working on. After chatting or planning, you can switch directly to Agent mode to pick up and take action on something you were cooking up in Ask mode. Here’s an example of planning a simple tic-tac-toe game implementation using the Ask feature: Feature: Agent Agent mode lets the AI model take the wheel and write code, make edits, or take other similar actions on your code base. The goal is that you can write prompts and give instructions, and the Agent can generate the code and build features or even entire applications for you. With great power comes great responsibility. Agents are a feature where the more you put into them, the more you get out. The more skilled you become in using them by providing better prompts and including the right context, you will continue to get better results. The AI doesn’t always get it right, but the fact that the models and the users are both getting better is exciting. Throughout this post, I will share the best use cases, tips, and tricks I have found using Cursor Agent. Here’s an example using the Agent to execute the implementation details of the tic-tac-toe game we planned using Ask: Core Concept: Context After understanding the features and the basics of prompting, context is the most important thing for getting the best results out of Cursor. In Cursor and in general, whenever you’re prompting a chat or an agent, you want to make sure that it has all the relevant information that it needs to provide an answer or result. Cursor, by default, always has some context of your code. It indexes your code base and usually keeps the open buffer in the context window at the very least. At the top left of the Ask or Agent panel, there is an @ button, and next to that are badges for all the current items that have been explicitly added to the context for the current session. The @ button has a dropdown that allows you to add files, folders, web links, past chats, git commits, and more to the context. Before you prompt, always make sure you add the relevant content it needs as context so that it has everything it needs to provide the best response. Settings and Rules Cursor has its own settings page, which you can access through Cursor → Settings → Cursor Settings. This is where you log in to your account, manage various features, and enable or disable models. In the General section, there is an option for Privacy Mode. This is one setting in particular I recommend enabling. Aside from that, just explore around and see what’s available. Models The model you use is just as important as your prompt and the context that you provide. Models are the underlying AI/LLM used to process your input. The most well-known is GPT-4o, the default model for ChatGPT. There are a lot of different models available, and Cursor provides access to most of them out of the box. Model pricing A lot of the most common models, like GPT-4o or Sonnet 3.5/3.7, are included in your Cursor subscription. Some models like o1 and Sonnet 3.7 MAX are considered premium models, and you will be billed for usage for these. Be sure to pay attention to which models you are using so you don’t get any surprise bills. Choosing a Model Some models are better suited for certain tasks than others. You can configure which models are enabled in the Cursor Settings. If you are planning out a big feature or trying to solve some complex logic issue, you may want to use one of the thinking models, like o1, o3-mini, or Deep Seek R1. For most coding tasks and as a good default, I recommend using Sonnet 3.5 or 3.7. The great thing about Cursor is that you have the options available right in your editor. The most important piece of advice that I can give in this post is to keep trying things out and experimenting. Try out different models for different tasks, get a feel for it, and find what works for you. Use cases Agents and LLM models are still far from perfect. That being said, there are already a lot of tasks they are very good at. The more effective you are with these tools, the more you will be able to get done in a shorter amount of time. Generating test cases Have some code that you would like unit tested? Cursor is very good at generating test cases and assertions for your code. The fewer barriers there are to testing a piece of code, the better the result you will get. So, try your best to write code that is easily testable! If testing the code requires some mocks or other pieces to work, do your best to provide it the context and instructions it needs before writing the tests. Always review the test cases! There could be errors or test cases that don’t make sense. Most of the time, it will get you pretty close to where you want to be. Here’s an example of using the Agent mode to install packages for testing and generate unit tests for the tic-tac-toe game logic: Generating documentation This is another thing we know AI models are good at - summarizing large chunks of information. Make sure it has the context of whatever you want to document. This one, in particular, is really great because historically, keeping documentation up to date is a rare and challenging practice. Here’s an example of using the Agent mode to generate documentation for the tic-tac-toe game: Code review There are a lot of up-and-coming tools outside of Cursor that can handle this. For example, GitHub now has Copilot integrated in pull requests for code reviews. It’s never a bad idea to have whatever change set you’re looking to commit reviewed and inspected before pushing it up to the remote, though. You can provide your unstaged changes or even specific commits as context to a Cursor Ask or Agent prompt. Getting up to speed in a new code base Being able to query a codebase with the power of LLM’s is truly fantastic. It can be a great help to get up to speed in a large new codebase quickly. Some example prompts: > Please provide an overview of this project and how to get started developing with it > I need to make some changes to the way that notifications are grouped in the UI, please provide a detailed analysis and pseudo code outlining how the grouping algorithm works If you have a question about the code base, ask Cursor! Refactoring Refactoring code in a code base is a much quicker process in Cursor. You can execute refactors depending on their scope in a couple of distinct ways. For refactors that don’t span a lot of files or are less complex, you can probably get away with just using the autocomplete. For example, if you make a change to something in a file and there are several instances of the same pattern following, the autocomplete will quickly pick up on this and help you tab through the changes. If you switch to another file, this information will still be in context and can be continued most of the time. For larger refactors spanning several files, using the Agent feature will most likely be the quickest way to get it done. Add all the files you plan to make changes to the Agent tab’s context window. Provide specific instructions and/or a basic example of how to execute the refactor. Let the Agent work, if it doesn’t get it exactly right initially, you can always give it corrections in a follow-up prompt. Generating new code/features This is the big promise of AI agents and the one with the most room for mixed results. My main recommendation here is to keep experimenting. Keep learning to prompt more effectively, compare results from different models, and pay attention to the results you get from each use case. I personally get the best results building new features in small, focused chunks of work. It can also be helpful to have a dialog with the Ask feature first to plan out the feature's details that the Agent can follow up on and implement. If there are existing patterns in your codebase for accomplishing certain things, provide this information in your prompts and make sure to add the relevant code to the context. For example, if you’re adding a new form to the web page and you have other similar forms that handle validation and making back-end calls in the same way, Cursor can base the code for the new feature on this. Example prompt: Generate a form for creating a new post, follow similar patterns from the create user profile form, and look to the post schema for the fields that should be included. Remember that you can always follow up with additional prompts if you aren’t quite happy with the results of the first.. If the results are close but need to be adjusted in some way, let the agent know in the next prompt. You may find that for some things, it just doesn’t do well yet. Mentally note these things and try to get to a place where you can intuit when to reach for the Agent feature or just write some of the code the old-fashioned way. Tips and tricks The more you use Cursor, the more you will find little ways to get more out of it. Here are some of the tips and patterns that I find particularly useful in my day-to-day work. Generating UI with screenshots You can attach images to your prompts that the models can understand using computer vision. To the left of the send button, there is a little button to attach an image from your computer. This functionality is incredibly useful for generating UI code, whether you are giving it an example UI as a reference for generating new UI in your application or providing a screenshot of existing UI in your application and prompting it to change details in reference to the image. Cursor Rules Cursor Rules allow you to add additional information that the LLM models might need to provide the best possible experience in your codebase. You can create global rules as well as project-specific ones. An example use case is if your project has some updated dependency with newer APIs than the one on which the LLM has been trained. I ran into this when adding Tailwind v4 to a project; the models are always generating code based on Tailwind v3 or earlier. Here’s how we can add a rules file to handle this use case: ` If you want to see some more examples, check out the awesome-cursorrules repository. Summary Learn to use Cursor and similar tools to enhance your development process. It may not give you actual superpowers, but it may feel like it. All the features and tools we’ve covered in this post come together to provide an amazing experience for developing all types of software and applications....

Next.js + MongoDB Connection Storming cover image

Next.js + MongoDB Connection Storming

Building a Next.js application connected to MongoDB can feel like a match made in heaven. MongoDB stores all of its data as JSON objects, which don’t require transformation into JavaScript objects like relational SQL data does. However, when deploying your application to a serverless production environment such as Vercel, it is crucial to manage your database connections properly. If you encounter errors like these, you may be experiencing Connection Storming: * MongoServerSelectionError: connect ECONNREFUSED <IP_ADDRESS>:<PORT> * MongoNetworkError: failed to connect to server [<hostname>:<port>] on first connect * MongoTimeoutError: Server selection timed out after <x> ms * MongoTopologyClosedError: Topology is closed, please connect * Mongo Atlas: Connections % of configured limit has gone above 80 Connection storming occurs when your application has to mount a connection to Mongo for every serverless function or API endpoint call. Vercel executes your application’s code in a highly concurrent and isolated fashion. So, if you create new database connections on each request, your app might quickly exceed the connection limit of your database. We can leverage Vercel’s fluid compute model to keep our database connection objects warm across function invocations. Traditional serverless architecture was designed for quick, stateless web app transactions. Now, especially with the rise of LLM-oriented applications built with Next.js, interactions with applications are becoming more sequential. We just need to ensure that we assign our MongoDB connection to a global variable. Protip: Use global variables Vercel’s fluid compute model means all memory, including global constants like a MongoDB client, stays initialized between requests as long as the instance remains active. By assigning your MongoDB client to a global constant, you avoid redundant setup work and reduce the overhead of cold starts. This enables a more efficient approach to reusing connections for your application’s MongoDB client. The example below demonstrates how to retrieve an array of users from the users collection in MongoDB and either return them through an API request to /api/users or render them as an HTML list at the /users route. To support this, we initialize a global clientPromise variable that maintains the MongoDB connection across warm serverless executions, avoiding re-initialization on every request. ` Using this database connection in your API route code is easy: ` You can also use this database connection in your server-side rendered React components. ` In serverless environments like Vercel, managing database connections efficiently is key to avoiding connection storming. By reusing global variables and understanding the serverless execution model, you can ensure your Next.js app remains stable and performant....

Vercel BotID: The Invisible Bot Protection You Needed cover image

Vercel BotID: The Invisible Bot Protection You Needed

Nowadays, bots do not act like “bots”. They can execute JavaScript, solve CAPTCHAs, and navigate as real users. Traditional defenses often fail to meet expectations or frustrate genuine users. That’s why Vercel created BotID, an invisible CAPTCHA that has real-time protections against sophisticated bots that help you protect your critical endpoints. In this blog post, we will explore why you should care about this new tool, how to set it up, its use cases, and some key considerations to take into account. We will be using Next.js for our examples, but please note that this tool is not tied to this framework alone; the only requirement is that your app is deployed and running on Vercel. Why Should You Care? Think about these scenarios: - Checkout flows are overwhelmed by scalpers - Signup forms inundated with fake registrations - API endpoints draining resources with malicious requests They all impact you and your users in a negative way. For example, when bots flood your checkout page, real customers are unable to complete their purchases, resulting in your business losing money and damaging customer trust. Fake signups clutter the app, slowing things down and making user data unreliable. When someone deliberately overloads your app’s API, it can crash or become unusable, making users angry and creating a significant issue for you, the owner. BotID automatically detects and filters bots attempting to perform any of the above actions without interfering with real users. How does it work? A lightweight first-party script quickly gathers a high set of browser & environment signals (this takes ~30ms, really fast so no worry about performance issues), packages them into an opaque token, and sends that token with protected requests via the rewritten challenge/proxy path + header; Vercel’s edge scores it, attaches a verdict, and checkBotId() function simply reads that verdict so your code can allow or block. We will see how this is implemented in a second! But first, let’s get started. Getting Started in Minutes 1. Install the SDK: ` 1. Configure redirects Wrap your next.config.ts with BotID’s helper. This sets up the right rewrites so BotID can do its job (and not get blocked by ad blockers, extensions, etc.): ` 2. Integrate the client on public-facing pages (where BotID runs checks): Declare which routes are protected so BotID can attach special headers when a real user triggers those routes. We need to create instrumentation-client.ts (place it in the root of your application or inside a src folder) and initialize BotID once: ` instrumentation-client.ts runs before the app hydrates, so it’s a perfect place for a global setup! If we have an inferior Next.js version than 15.3, then we would need to use a different approach. We need to render the React component inside the pages or layouts you want to protect, specifying the protected routes: ` 3. Verify requests on your server or API: ` - NOTE: checkBotId() will fail if the route wasn’t listed on the client, because the client is what attaches the special headers that let the edge classify the request! You’re all set - your routes are now protected! In development, checkBotId() function will always return isBot = false so you can build without friction. To disable this, you can override the options for development: ` What happens on a failed check? In our example above, if the check failed, we return a 403, but it is mostly up to you what to do in this case; the most common approaches for this scenario are: - Hard block with a 403 for obviously automated traffic (just what we did in the example above) - Soft fail (generic error/“try again”) when you want to be cautious. - Step-up (require login, email verification, or other business logic). Remember, although rare, false positives can occur, so it’s up to you to determine how you want to balance your fail strategy between security, UX, telemetry, and attacker behavior. checkBotId() So far, we have seen how to use the property isBot from checkBotId(), but there are a few more properties that you can leverage from it. There are: isHuman (boolean): true when BotID classifies the request as a real human session (i.e., a clear “pass”). BotID is designed to return an unambiguous yes/no, so you can gate actions easily. isBot (boolean): We already saw this one. It will be true when the request is classified as automated traffic. isVerifiedBot (boolean): Here comes a less obvious property. Vercel maintains and continuously updates a comprehensive directory of known legitimate bots from across the internet. This directory is regularly updated to include new legitimate services as they emerge. This could be helpful for allowlists or custom logic per bot. We will see an example in a sec. verifiedBotName? (string): The name for the specific verified bot (e.g., “claude-user”). verifiedBotCategory? (string): The type of the verified bot (e.g., “webhook”, “advertising”, “ai_assistant”). bypassed (boolean): it is true if the request skipped BotID check due to a configured Firewall bypass (custom or system). You could use this flag to avoid taking bot-based actions when you’ve explicitly bypassed protection. Handling Verified Bots - NOTE: Handling verified bots is available in botid@1.5.0 and above. It might be the case that you don’t want to block some verified bots because they are not causing damage to you or your users, as it can sometimes be the case for AI-related bots that fetch your site to give information to a user. We can use the properties related to verified bots from checkBotId() to handle these scenarios: ` Choosing your BotID mode When leveraging BotID, you can choose between 2 modes: - Basic Mode: Instant session-based protection, available for all Vercel plans. - Deep Analysis Mode: Enhanced Kasada-powered detection, only available for Pro and Enterprise plan users. Using this mode, you will leverage a more advanced detection and will block the hardest to catch bots To specify the mode you want, you must do so in both the client and the server. This is important because if either of the two does not match, the verification will fail! ` Conclusion Stop chasing bots - let BotID handle them for you! Bots are and will get smarter and more sophisticated. BotID gives you a simple way to push back without slowing your customers down. It is simple to install, customize, and use. Stronger protection equals fewer headaches. Add BotID, ship with confidence, and let the bots trample into a wall without knowing what’s going on....

Let's innovate together!

We're ready to be your trusted technical partners in your digital innovation journey.

Whether it's modernization or custom software solutions, our team of experts can guide you through best practices and how to build scalable, performant software that lasts.

Prefer email? hi@thisdot.co